FINANCIAL CRISIS AND BANKING BEHAVIOUR
IN A POST-KEYNESIAN STOCK-FLOW CONSISTENT MODEL

Edwin Le Heron
SPIRIT – Sciences Po Bordeaux – CNRS UMR 5116
e.le.heron@sciencespobordeaux.fr

SEMINAIRE POLES 2/3 du 23 Janvier 2009

While in 2007 it was only a financial crisis and particularly, a banking crisis, now economic growth and employment are deteriorating sharply. The aim of this paper is to understand how the financial crisis was transformed in a global real economic crisis and how it passed through the banking behaviour. More, the independence of central banks significantly increased in Europe after 1990, which could preclude the co-ordination between the fiscal and the monetary policies. In order to do so, we develop a two-country model suffering a fall in the state of confidence of banks. We contrast a rule on public expenditures with a rule on public deficits and a usual Taylor rule with a truncated Taylor rule. In the first country, the government implements a fiscal policy with automatic stabilizers and a central bank has a dual mandate: inflation and growth. There is a co-ordination between fiscal and monetary policies. The second country implements an orthodox fiscal policy (balanced budget) and the central bank has a unique objective: inflation.

In the first part of the paper, we build a Post Keynesian stock-flow consistent (SFC) model (Lavoie-Godley, 2001, 2007, Dos Santos-Zezza, 2004, Mouakil, 2006, Le Heron-Mouakil, 2008) with a private banks sector introducing more realistic features. We introduce the borrower’s and the lender’s risks from the Minskian approach. New Keynesian Macroeconomics replaces the three equations of the Keynesian synthesis by three new equations of the new consensus: an IS relation, a Taylor Rule (TR) (Taylor, 1993) and a New Keynesian Phillips Curve (NKPC) (Taylor, 1979). IS-LM-Phillips Curve has been changed into IS-TR-NKPC. Our Post Keynesian SFC model (59 equations) replaces the IS relation. Then, we add two of the three equations of the new consensus in macroeconomics: a Taylor rule and a kind of NKPC. IS-TR-NKPC is changed in SFC-TR-NKPC.

In the second part, we simulate the model to study the effects of a financial crisis on the banking behaviour within our two countries. The aim is to analyze the consequences of a fall in the state of confidence of banks and firms within our two assumptions on the policy mix. We make a comparison for the two countries and we analyze the channel of transmission of the banking behaviour on the economic activity.
A POST KEYNESIAN STOCK-FLOW CONSISTENT GROWTH MODEL WITH A FULL BANKING SECTOR, A TAYLOR RULE AND A NEW KEYNESIAN PHILLIPS CURVE

Building a stock-flow consistent model requires three steps: writing the matrices, counting the variables and the accounting identities issued from the matrices, and defining each unknown with an equation (accounting identity or behavioural equation).

Matrices

Five sectors form our economy: government, firms, households, private banks and central bank. All production must be financed. However, current production is financed by the working capital of entrepreneurs (retained earnings) and by contracted revolving funds granted by banks at the current rate of interest. These two factors constitute a shock absorber to possible monetary rationing by banks. We are essentially limiting our study to the effects that monetary policy might have on new financing for investment and growth of production.

Let us proceed to examine the gross supply \((q) \) and the net supply \((\Delta F) \) of finance by banks – that is to say, the new flow of money, as opposed to the existing stock of money (D). Also, there is a stock of money demand equal to transaction, precaution, finance and speculative motives, whereas the desired gross finance demand \((q^d) \) represents the new flow of financing required by firms \((I^d) \) plus the redemption of the debt (amortization = amort) minus the undistributed profits \((P^u) \). Thus the internal funds of firms \((IF) \) represent the undistributed profits \((P^u) \) minus the redemption of the debt (amort). Assuming a closed economy, demand for money can be satisfied by banks, either by the stock markets or by credit. At the end of the period, net financing demand \((\Delta F_D) \) can be constrained by net money supply from banks \((\Delta F) \) (granted financing - paid off financing - amortization). \(\Delta F \) determines monetary creation in the period.

We discuss here a closed economy. Firms issue equities, bonds with fixed rates of interest and commercial papers, and borrow money from banks to finance investments but they neither hold money balance. They have excess capacity but no inventories.\(^1\) Two factors are involved in producing goods (fixed capital and labour), but we deal with a vertically integrated sector and hence ignore all intermediate goods. Banks have no operating costs and they don’t make loans to households. Contrary to Lavoie-Godley (2001), private banks own a net wealth and retain all their profits.

The central bank has neither operating costs nor net worth. The central bank pays all its profits to the government, which collects taxes from households and finances its deficit by issuing Treasury bills. Government expenditures are only final sales of consumption goods: there is neither operating costs (like wages for state employees) nor transfers between households. The financial behaviour of households is simplified: they hold only banking deposit account (current accounts and time deposits).

\(^1\) Excess capacity exists because of expectations of future demand, entry barriers, cost minimization, time-taking production. For the role of inventories see Godley and Lavoie (2007: chapter 9).
SFC modelling is based on two tables: a balance sheet matrix (stocks) and a transactions matrix (flows). Table 8.1 gives the transactions matrix that describes monetary flows between the five sectors of the economy. Every row represents a monetary transaction, and every column corresponds to a sector, which is fragmented in a current and a capital account, except in basic cases such as the government and that of households. Sources of funds appear with plus signs and uses of funds with negative signs, so every row must sum to zero seeing that each transaction corresponds always simultaneously to a source and a use of funds. The sum of each column must also be zero since each account (or sub-account) is balanced.
Table 8.1: Transactions matrix

Table 8.2 gives the balance sheet matrix of our economy. Symbols with plus describe assets and negative signs indicate liabilities. The sum of every row is again zero except in the case of accumulated capital in the industrial sector. The last row presents the net wealth of each sector.
Variables and accounting identities

Building a model that describes the monetary economy of production discussed above in a consistent way requires that the transactions matrix should be properly translated into equations. First, the model must contain the 26 variables of the matrix. Each of these 26 variables can be associated with the behaviour of one of the five sectors of our economy.

Government: G, T, B, ib

Firms: I, W, P, Pu, Pd, e

Households: C, D

Private banks: iL, L, icp, CP, of, pe, id, Pb

Central Bank: H, icb, REF, Pcb

Second, we must use the accounting identities resulting from each row and each column sum to zero. We have nine accounting identities corresponding to the eight columns of the transactions matrix and to the non-ordinary row². To start we transcribe the identities (uses of funds on the left side, sources of funds on the right side) without being precise how we will use them in the model:

(i) \[G + (i_{b-1} \cdot B_t) \equiv T + P_{cb} + \Delta B \]

(ii) \[W + (i_{l-1} \cdot L_t) + (i_{cp-1} \cdot CP_t) + (i_{of-1} \cdot of_t) + P \equiv C + I + G \]

(iii) \[I \equiv Pu + (\Delta e \cdot p_e) + \Delta L + \Delta CP + (\Delta of \cdot p_{of}) \equiv q + Pu - \text{amort} \]

(iv) \[C + T + \Delta D \equiv W + (i_{d-1} \cdot D_t) \]

(v) \[(i_{d-1} \cdot D_t) + (icb_{-1} \cdot REF_t) + P_b \equiv (ib_{-1} \cdot B_t) + (i_{l-1} \cdot L_t) + (i_{cp-1} \cdot CP_t) + (i_{of-1} \cdot of_t) + Pd \]

(vi) \[\Delta H + \Delta B + (\Delta e \cdot p_e) + \Delta L + \Delta CP + (\Delta of \cdot p_{of}) \equiv P_b + \Delta D + \Delta REF \]

² What we call non-ordinary row is the row concerning profits of banks that includes three different variables (see ix).
A feature of SFC models is that if there are M columns and N non ordinary rows in the transactions matrix, then there are only \((M + N - 1)\) independent accounting identities in the model. Because of this one equation must be dropped: we shall use exactly eight accounting identities in the model. Concerning the balance sheet matrix, it is simpler: we just make sure that initial values of stocks are consistent with the matrix. In the following periods, stocks will stay consistent since our eight identities will generate consistent flows. Now we must define every variable relative to the five sectors using an accounting identity\(^3\) or a behavioural equation. When we introduce new unknowns in a behavioural equation we define them immediately so that our model should have the same number of equations as unknowns.

The national income \((Y)\) adds the household consumption \((C)\), investment of the firms \((I)\) and the public expenditure \((G)\). The rate of growth of the national income is \(gr\)\(_Y\):

\[
\begin{align*}
(8.1) & \quad Y = C + I + G \\
(8.2) & \quad gr_Y = \Delta Y / Y_t-1
\end{align*}
\]

Two fiscal policies for the Government: G, T, B, i\(_b\)

The government collects only taxes from households (on wages):

\[
(8.3) \quad T = \tau \cdot W_t-1 \quad \text{With } \tau: \text{ constant}
\]

The government finances any deficit issuing bills, so that the supply of treasury bills \((B)\) in the economy is identical to the stock of government debt. In other words, it is given by the pre-existing stock of debt plus its current deficit \((GD)\). The current deficit of the Government includes the redemption of the National debt. We assume that private banks give limitless credit to government at the long-term rate of interest:

\[
\begin{align*}
(8.4) & \quad B = B_t + GD \\
(8.5) & \quad i_b = i_t
\end{align*}
\]

To analyze the consequences of a supply shock, we assume two different assumptions for the fiscal policy. We contrast a rule on public expenditures \((F1)\) with a rule on public deficits \((F2)\).

Assumption 1 (F1): A stabilizing effect of the fiscal policy

First, we assume that public expenditure \((G)\) is always growing at the same rate \((gr_Y)\) as the national income \((Y)\). With \(F1\), public expenditure is pro-cyclical, because \(G\) falls with the GDP. But the final effect of the fiscal policy is measured by the government deficit \((GD)\). Tax revenue is proportional to income and hence varies in line with the public expenditure. But with a contractionary monetary policy and its higher interest rate, the financial costs of the national debt increase. The global impact is linked to the key interest rate and, then, to the monetary policy. It looks like a co-ordination between the monetary and the fiscal policies. With \(F1\), the economy has a

\(^3\) When we use an accounting identity we often need to rewrite it so we will always recall its number (using Roman numeral), rendering it more easily recognizable by the reader.
self-stabilizing tendency due to the fiscal policy, though the fiscal policy effect comes through the effects of interest rate on the budget deficit.

\[(8.6\text{-F1}) \quad G = G_{t-1} \cdot (1 + g_{Y\cdot t-1})\]
\[(8.7\text{-i-F1}) \quad GD = G + (i_{b\cdot t-1} \cdot B_{t-1}) - T - P_{cb}\]

Assumption 2 (F2): a ‘neutral’ fiscal policy

Second, we assume that a ‘neutral’ fiscal policy corresponds to a constant ratio \((r_{GD})\) of government deficit-to-the last national income: \(DB/Y_{t-1}\). It is more or less the case of the Maastricht treaty of the European Union. The stability and growth pact of the Treaty decrees that ‘Member States shall avoid excessive government deficits’. Then we use the first accounting identity to calculate the adequate public expenditure. In experiences, we shall take the ratio \((r_{GD})\) equal to zero as is required by the Maastricht treaty. Contrary to the previous assumption, the public debt is zero, since the budget is balanced. As the interest rate does not act on fiscal policy, there is no coordination between the fiscal and the monetary policies.

\[(8.6\text{-F2}) \quad GD = r_{GD} \cdot Y_{t-1}\] \quad \text{With } r_{GD}: \text{ constant}
\[(8.7\text{-i-F2}) \quad G = GD - (i_{b\cdot t-1} \cdot B_{t-1}) + T + P_{cb}\]

With these assumptions, we should better understand the links between monetary policy and fiscal policy (Figure 8.1):

![Figure 8.1](image-url)

Figure 8.1: Higher key interest rate (from 2 to 3% after period 5): effects on the growth rate of the economy with F1 and F2

4 In all the figures (except the figure 8.4), all values on the vertical axis are homogenized to one for the steady state.
Firms: I, W, P, P^u, P^d, e, OG

The investment function is the most important one in a growth model. The stock of capital increases with the flow of net investment (I) that is financed by the total of external funds from commercial banks (gross finance = q) and by the internal funds of firms. The self-financing of firms corresponds to the retained earnings (P^u) minus the redemption of the debts of firms (amort). Amortization concerns only the debt: loans (L), bonds (OF) and commercial papers (CP).

\[
\text{(8.8)} \quad K = K_{-1} + I \\
\text{(8.9-iii)} \quad I = q + \text{IF} \\
\text{(8.10)} \quad \text{IF} = P^u - \text{amort} \\
\text{(8.11)} \quad \text{amort} = (a_l \cdot L_{-1}) + (a_{of} \cdot OF_{-1}) + (a_{cp} \cdot CP_{-1})
\]

In our model, we focus on the difference between actual investment (I) and the desired investment of firms (I_D). The banks accept to finance totally or in part the second one according their lender’s risk (LR) (see equations 8.32, 8.33, 8.35). A monetary rationing on investment can exist (q<q^d or I=I_L). The desired rate of accumulation (gr_{KD}) is function of an exogenous state of confidence (\gamma_0), the capacity utilization rate (u) and of the borrower’s risk (BR), which is measured by the rate of cash flow (r_{cf}) and by the financial condition index (FCI). The rate of cash flow is the ratio of retained earnings to capital and the financial condition index captures the sensitivity of investment to the long-term interest rate, to the short-term interest rate and to the financial capitalization ratio. The lender’s risk and the borrower’s risk come from the analysis of H. Minsky.

\[
\text{(8.12)} \quad I_D = \text{gr}_{KD} \cdot K_{-1} \\
\text{(8.13)} \quad q^d = I^d - \text{IF} \\
\text{(8.14)} \quad \text{gr}_{KD} = \gamma_0 + (\gamma_1 \cdot r_{cf-1}) + (\gamma_2 \cdot u_{-1}) - (\gamma_3 \cdot \text{FCI}_{-1}) \quad \text{With } \gamma_i \text{: constant}
\]

where the rate of capacity utilization is defined as the ratio of output to full capacity output (Y_{fc}):

\[
\text{(8.15)} \quad r_{cf} = P^d / K_{-1} \\
\text{(8.16)} \quad u = Y / Y_{fc}
\]

The capital-to-full capacity ratio (\sigma) is defined as a constant:

\[
\text{(8.17)} \quad Y_{fc} = K_{-1} \cdot \sigma \quad \text{With } \sigma \text{: constant} \\
\text{(8.18)} \quad \text{FCI} = (\mu_1 \cdot i_l \cdot L/K) + (\mu_2 \cdot i_{ch} \cdot CP/K) - (\mu_3 \cdot E/Y) \quad \text{With } \mu_i \text{: constants}
\]

Concerning wages, they can be decomposed into a unit wage (w) times the level of employment (N):

\[
\text{(8.19a)} \quad W = w \cdot N \\
\text{where employment is determined by sales given productivity (\sigma_2):} \\
\text{(8.19b)} \quad N = Y / \sigma_2 \quad \text{With } \sigma_2 \text{: constant}
\]

The full employment (N_{fc}) is:

\[
\text{(8.19c)} \quad N_{fc} = Y_{fc} / \sigma_2 \quad \text{With } \sigma_2 \text{: constant}
\]

The unemployment (Un) or the output gap (OG) are easily found:

\[
\text{(8.19d)} \quad \text{Un} = N_{fc} - N \\
\text{(8.19e)} \quad \text{OG} = Y - Y_{fc}
\]

The rate of unemployment r_{un} is:

\[
\text{(8.19f)} \quad r_{un} = \text{Un} / N_{fc}
\]

For the model, we measure the output gap in ratio:
We assume that the ratio ‘wages on output’ (W/Y) is exogenous and constant.

\[
(8.20) \quad W = Y / \rho \quad \text{With } \rho: \text{ constants}
\]

Total profits (P) of firms are the difference between their sales and their expenditures (wages and interest payments on loans, commercial papers and bonds):

\[
(8.21-ii) \quad P = Y - W - \left(i_{l-1} \cdot L_{-1} \right) - \left(i_{cp-1} \cdot CP_{-1} \right) - \left(i_{of-1} \cdot OF_{-1} \right)
\]

Distributed dividends (P^d) are a fraction of profits realized in the previous period:

\[
(8.22) \quad P^d = (1 - s_t) \cdot P_{-1} \quad \text{With } s_t: \text{ constant}
\]

Retained earnings (P^u) are determined as the residual:

\[
(8.23-ix) \quad P^u = P - P^d
\]

Equations concerning issues of equities by firms are usually oversimplified in SFC models. We simply assume that the stock of shares grows at the rate of the GDP with a lag of one year (gr_{y-1}): \Delta e / e_{-1} = gr_{y-1}. The more the economy grows, the more firms issue equities. There are two explanations. First it is easier to sell new equities when the economy and thus the profits grow. Second, firms need new finance to follow the growth of the GDP.

\[
(8.24) \quad e = e_{-1} \cdot (1 + gr_{y-1})
\]

Households: C, D

We assume that households determine their consumption expenditure (C) on the basis of their expected disposable income and their wealth of the previous period (that consist entirely of bank deposits: current accounts and time deposits):

\[
(8.25) \quad C = (\alpha_t \cdot Y^a_w) + (\alpha_3 \cdot Y^a_v) + (\alpha_3 \cdot D_{-1}) \quad \text{With } \alpha_i: \text{ constant } 1 > \alpha_1 > \alpha_2 > \alpha_3 > 0
\]

\[
(8.26) \quad Y^a_w = Y_{w-1} + \theta_h \cdot (Y_{w-1} - Y^a_{w-1}) \quad \text{With } \theta_h: \text{ constant}
\]

\[
(8.27) \quad Y^a_v = Y_{v-1} + \theta_h \cdot (Y_{v-1} - Y^a_{v-1})
\]

\[
(8.28) \quad Y_w = W - T
\]

\[
(8.29) \quad Y_v = i_{d-1} \cdot D_{-1}
\]

\[
(8.30) \quad Y_h = Y_w + Y_v
\]

Whereas \((Y^a_w)\) is the expected disposable income of workers, \((Y^a_v)\) the expected disposable financial income and each \((\alpha_i)\) is a propensity to consume. There are adaptive expectations\(^5\).

Following the Kaleckian tradition, we assume that wages are mostly consumed while financial income is largely devoted to saving \((1 > \alpha_1 > \alpha_2 > 0)\). This class-based saving behaviour is of importance in a SFC model where interest payments play a great role. With the same high propensity to consume \((\alpha_1 = \alpha_2)\), an increase of the interest rates can move the economy to a higher growth path in the long run. The consumption decision determines the amount that households will save out of their disposable income \(Y_h\):

\[
(8.31-iv) \quad D = D_{-1} + Y_h - C
\]

\(^5\) The expected value of any variable for current period (represented with the superscript \(a\)) depends on its value of the previous period plus an error correction mechanism where \((\theta)\) represents the speed of adjustment in expectations.
Private banks: i, L, i_{cp}, CP, i_{df}, p_{of}, of, i_{de}, p_{e}, P_{b}

Firms’ financing is fundamental in a monetary economy of production. Firms begin by being self-financed then turn to external finance (ΔF_D). Banks only finance projects they consider profitable, but confidence in their judgment is variable and can justify various strategies. Banks examine firms’ productive and financial expectations and also their financial structure. This investigation is made according to their confidence in the state of long-term expectations of yields on capital assets, influencing what Keynes referred to as ‘animal spirits’. The state of confidence of banks is notably taking into account by an exogenous variable (γ_d). After the study of expected production and of demand of financing that integrates the firm’s borrowing risk (r_b), bankers can refuse to finance. The state of confidence of banks summarizes these factors.

Banks know a lender’s risk (LR) when underwriting finance\(^6\) and creating money. Lender’s risk is the sum of three fundamental risks:

- First, risk of default corresponds to the bank’s perception regarding the borrower’s likelihood failure to repay the claim.
- Second, risk of liquidity. Liquidity entails the ability to reverse a decision at any moment at the smallest possible cost.
- Third, market risk corresponds to unanticipated changes on the various financial markets. Market risk can be split into other risks. Fluctuations in capital asset prices modify their value and explain capital risk - which is very high for equities and fixed-yield bonds. For the fixed-yield bonds, capital risk is inversely proportional to interest rates. The risk of income mainly concerns the highly uncertain dividends of equities and the variable yield of loans. Finally, monetary policy involves a money market risk when fluctuations in the money interest rates occur.

In equations (8.32, 8.35, 8.52, 8.53), the risks of default and of liquidity are take account by the gap of the leverage ratio with a conventional leverage ratio. We also introduce the value of the securities lodged as collateral and the cost of indebtedness for the risk of default. The market risk is taken into account by the expected capital gains on equities (CG_e^a) and on fixed-yield bonds (CG_{of}^a), but also with the central bank interest rate.

When the lender’s risk is at a maximum (LR = 1), commercial banks refuse to finance the net investment of firms: $\Delta F = 0$. Desired investment (I_D) faces a serious finance rationing. The flow of net investment is only financed by self-funding, that is the retained earnings (P^n), minus the amortization of the debt, minus the capital losses of firms (CG). Thus the money supply (in stock) can be reduced with the redemption of the debt. If the lender’s risk is null (LR = 0), desired investment is fully financed: $\Delta F = \Delta F_D$ or $\varphi = \varphi^d$. It is the horizontalist case. The capital losses of firms are also the capital gains of banks, measured by the capital losses on equities (CG_e) and on fixed rate bonds (CG_{of}) (équations 44 and 50).

\[(8.32) \quad \varphi = \varphi^d (1 - LR) \quad \text{With } 0 \leq LR \leq 1 \]
\[(8.33) \quad \Delta F = \varphi - \text{amort} + CG \]
\[(8.34) \quad CG = CG_e + CG_{of} \]

\(^6\) We will take into account the loans (L) (long-term), the short-term securities as treasury bills (B) and commercial papers (CP), bonds (fixed-rate (OF)) and equities (E).
In the model, the lender’s risk (LR) is measured by the difference between the current leverage ratio and the conventional leverage ratio (quantity of indebtedness), by the variation in the value of the securities lodged as collateral (\(V_C\)) and by the cost of indebtedness (\(i_{eb}\)). The higher current indebtedness of firms ((\(CP + OF + L) / K\)) is over the accepted indebtedness, the more the lender’s risk is. The accepted indebtedness is conventional, but this conventional indebtedness can increase during a boom and decrease during a crisis. The variation in the value of the securities lodged as collateral (\(V_C\)) is measured by the value of equities (E) on the value of equities of the last period. The financial value is the value of the equities on the market.

\[
\begin{align*}
(8.35) & \quad LR &= - \gamma_4 + a_1 \cdot (\text{lev}_{-1} - \text{lev}_{c}) - (b_1 \cdot V_C) + (c_1 \cdot i_{eb}) \\
& \quad & \quad \text{With } \gamma_4, a_1, b_1, c_1 \text{ et lev}_{c} \text{: constant} \\
(8.36) & \quad \text{lev} &= (CP + OF + L) / K \\
(8.37) & \quad V_C &= E / E_{-1}
\end{align*}
\]

We come to the equations defining the portfolio behaviour of banks. We follow the methodology developed by Godley and Lavoie (2007) and inspired by Tobin (1958). Banks can hold four different assets: bonds (with fixed rate of interest) \(OF = o_f \cdot p_{of}\), equities \(E = e \cdot p_e\), loans at variable long-term interest rate (L) and commercial paper (CP) at short-term interest rate. The \(\lambda_{ij}\) parameters follow the vertical, horizontal and symmetry constraints (Godley and Lavoie, 2007). Banks are assumed to make a certain proportion \(\lambda_{i0}\) of their financing in the form of asset \(i\) but this proportion is modified by the rates of return on these assets. Banks are concerned about \((i_i)\) and \((i_{cp})\), the rates of interest on loans and on commercial paper to be determined at the end of the current period, but which will generate the interest payments in the following period. We have further assumed that it is the expected rates of return on equities \((r_e^a)\) and on bonds \((r_{of}^a)\) that enter into the determination of portfolio choice. The four assets demand function described with the matrix algebra are thus:

\[
\begin{align*}
(8.38) & \quad OF &= \left(\lambda_{10} + \lambda_{11} \cdot r_{of}^a - \lambda_{12} \cdot r_e^a - \lambda_{13} \cdot i_{l} - \lambda_{14} \cdot i_{cp}\right) \cdot F \\
(8.39) & \quad E &= \left(\lambda_{20} - \lambda_{21} \cdot r_{of}^a + \lambda_{22} \cdot r_e^a - \lambda_{23} \cdot i_{l} + \lambda_{24} \cdot i_{cp}\right) \cdot F \\
(8.40) & \quad L &= \left(\lambda_{30} - \lambda_{31} \cdot r_{of}^a - \lambda_{32} \cdot r_e^a + \lambda_{33} \cdot i_{l} + \lambda_{34} \cdot i_{cp}\right) \cdot F \\
(8.41a) & \quad CP &= \left(\lambda_{40} - \lambda_{41} \cdot r_{of}^a - \lambda_{42} \cdot r_e^a - \lambda_{43} \cdot i_{l} - \lambda_{44} \cdot i_{cp}\right) \cdot F
\end{align*}
\]

As it is the case with every matrix, we cannot keep all these equations in the model because each one of them is a logical implication of the others. We model commercial paper as the residual equation:

\[
(8.41) \quad CP = F - OF - E - L
\]

For the bonds, the expected rate of yield \((r_{of}^a)\) is the fixed interest rate plus the expected capital gains on the market value of the previous period of these bonds \((OF_{-1})\). The market value of the bonds is the number of bonds \((of)\) times their prices \((p_{of})\). The interest rate \((i_{of})\) is always the long-term interest rate of the first period applied to the initial price (in \(t_0, p_{of} = 1\)). But after the first period, the prices of the old and of the new fixed-yield bonds \((p_{of})\) is inversely proportional to the changes in the long-term interest rates \((i_l)\).
The expected value of capital gains on bonds \((CG_{of}^{a})\) and on equities \((CG_{e}^{a})\) for current period depends on its value of the previous period plus an error correction mechanism where \((\theta)\) represents the speed of adjustment in expectations. The capital gains \((CG_{of} and CG_{e})\) correspond to the variations in the price times the quantity of the previous period.

\[
\begin{align*}
(8.42) & \quad r_{of}^{a} = i_{of} + CG_{of}^{a}/OF_{-1} \quad \text{With } i_{of} \text{ : constant} \\
(8.43) & \quad CG_{of}^{a} = CG_{of-1} + \theta_{b} \cdot (CG_{of-1} - CG_{of-1}^{a}) \\
(8.44) & \quad CG_{of} = \Delta p_{of} \cdot of_{-1} \\
(8.45) & \quad of = OF/p_{of} \\
(8.46) & \quad p_{of} = p_{of-1} \cdot (1 + i_{of})/(1 + i)
\end{align*}
\]

For the equities, the expected rate of yield \((r_{e}^{a})\) is the sum of the expected distributed profits \((P^{da})\) and the expected capital gains \((CG_{e}^{a})\), on the market value of the previous period of these equities \((E_{-1})\). As usual, the expected distributed profits \((P^{da})\) for current period depends on its value of the previous period plus an error correction mechanism where \((\theta)\) represents the speed of adjustment in expectations. The only price clearing mechanism of this model occurs in the equity market. The price of equities \((p_{e})\) will allow the equilibrium between the number of equities \((e; \text{ see equation 8.22})\) that has been issued by firms (the supply) and the amount of equities \((E)\) that private banks want to hold (the demand).

\[
\begin{align*}
(8.47) & \quad r_{e}^{a} = (P^{da} + CG_{e}^{a}) / E_{-1} \\
(8.48) & \quad P^{da} = P^{da}_{-1} + \theta_{b} \cdot (P^{da}_{-1} - P^{da}_{-1}) \\
(8.49) & \quad CG_{e}^{a} = CG_{e-1} + \theta_{b} \cdot (CG_{e-1} - CG_{e-1}^{a}) \\
(8.50) & \quad CGe = \Delta p_{e} \cdot e_{-1} \\
(8.51) & \quad p_{e} = E / e
\end{align*}
\]

Monetary authorities determine exogenously the key rate on the money market \((i_{cb})\). In 1936, Keynes asserts that this rate is widely conventional. While central banks fix the short-term rates, private banks’ liquidity preference determines banking rates (short, medium and long-term interest rates). Significant rates for growth and financing (loan) are the long-term interest rates \((i_{i})\). The link between short-term and long-term interest rates is complex. Macroeconomic banking interest rates \((i_{i})\) are the production costs of money plus a risk premium. The first element corresponds to functioning costs (wages, investment, immobilization); payment costs for monetary liabilities (subjected to the firms competition for households savings) and the cost of high powered money determined by the central bank; and to a rate of margin \((\chi)\) corresponding to standard profits of banks. The production costs of money are equal to \((i_{cb})\) plus a relatively constant mark up \((\chi)\).

Risk premiums are not constant because they are the fruits of the banks’ liquidity preference. Risk premiums cover lender’s risk \((lr)\). Five expectations strongly influence risk premiums: anticipations about the productivity, economic evolution (growth, employment) and budget; expected inflation; the level of future short-term rates of interest; financial markets’ evolution and capital assets’ prices; foreign long-term rates present. In the model, we use the same lender’s risk as the one seen previously (equation 8.35), that is a mix of state of confidence, leverage ratio and variation in the value of the securities lodged as collateral. But with the different coefficients \((\gamma_{5}), (a_{2})\) and \((b_{2}), (lr)\) can be negative and reduces the mark up. Therefore the long-term interest rate becomes endogenous and the spread between \((i_{cb})\) and \((i_{i})\) is not constant. Contrary to the
horizontalist' view, we introduce an endogenous curve of the interest rates. To explain the short-term interest rates \((i_b, \text{or } i_{bp})\), \(i_{cb}\) and \(\chi\) are sufficient. On the contrary, \(lr\) is the primary variable in order to explain long-term interest rates \((i_1, \text{or } i_{of})\). Banks apply a spread \((\chi_3)\) between the key rate and the rate on deposits in order to realize profits.

\[
(8.52) \quad i_1 = i_{cb} + lr + \chi_1 \quad \text{With } \chi_1: \text{constant } \chi_1 > \chi_2
\]

\[
(8.53) \quad lr = \gamma_5 + a_2 \cdot (lev_{-1} - lev_c) - b_2 \cdot V_c\quad \text{With } \gamma_5, a_2, b_2, \text{lev}_c \text{ constant and } c = \text{convention on the 'normal' debt ratio}
\]

\[
(8.54) \quad i_{bp} = i_{cb} + \chi_2 \quad \text{With } \chi_2: \text{constant } \chi_1 > \chi_2
\]

\[
(8.55) \quad i_d = i_{cb} - \chi_3
\]

The initial structure of interest rates is as following: \(i_1 > i_{of} > i_{bp} > i_b = i_{cb} > i_d\).

Banks try to maximize their net income. To make a profit, they finance the economy and agree to become less liquid. By making the almost irreversible decisions of financing, they are subjected to the lender's risk. They can hope for big profits only by lowering their \(LP_b\). Economic activity also depends on the animal spirits of banks. Finance scarcity can only be the consequence of a deliberate choice. 'Desired scarcity' of financing is the sign of banks’ liquidity preference. From an optimal structure of their balance sheet, we can measure the profits of commercial banks \((P_b)\) obtained by monetary financing:

\[
(8.56-v) \quad P_b = i_{b-1} \cdot B_{-1} + i_{c-1} \cdot L_{-1} + i_{of-1} \cdot CP_{-1} + i_{of} \cdot OF_{-1} + P^d - i_{d-1} \cdot D_{-1} - i_{cb-1} \cdot REF_1
\]

Central Bank : \(H, i_{cb}, \text{REF, } i_b, P_{cb}, \Pi, LF\)

It is assumed that banks are obliged by the government to hold reserve requirements \((H)\) in high powered money that do not generate interest payments and that must always be a fixed share (the compulsory ratio \(\eta\)) of deposits:

\[
(8.57) \quad H = \eta \cdot D
\]

Since the central bank is collecting interest payments advances while paying out no interest on the notes, it is also making profits \(P_{cb}\):

\[
(8.58-vii) \quad P_{cb} = i_{cb-1} \cdot REF_1
\]

It is assumed, in line with current practice, that any profits realized by the central bank revert to the government. Following the theory of endogenous money, we assume that the central bank is fully accommodating. First the central bank fixes the key rate of interest \((i_{cb})\) using a Taylor rule and second it provides whatever advances \((REF)\) demanded by banks at this rate.

Taylor propounded his first rule in 1993, modelling the dual mandate of the Fed. It was founded on the output gap and on the inflation gap. But the output gap generates a theoretical problem to the RBC models (Goodfriend-King or Rotenberg-Woodford) and creates an implementation problem for inflation targeting. Inflation targeting is more a hierarchical mandate than a dual mandate. A truncated rule (without the output gap) appeared as a theoretical answer (Batini and Haldane, 1999), but this solution does not characterize well the practice of central banking. The development of the DGSE models and of the New Macroeconomic Consensus (NCM) around three equations (IS, TR and NKPC) explains the numerous papers on the status of the output gap.
In our model, we use two of three equations from the NCM: a Taylor rule and a New Keynesian Phillips Curve. But we replace the IS equation by our post keynesian SFC model. We take two sorts of Taylor rule: a standard one and a truncated one.

The first hypothesis (M1) is that central bank uses a standard Taylor rule, modelling the dual mandate of the Fed. The key interest rate (i_{cb}) is a negative function of the output gap and a positive function of the inflation gap. Output gap is the difference between the full capacity output (Y_{fc}) and the current output (Y). Output gap in ratio (see equation 8.19 for OG_{R}) is output over the output gap. Inflation gap is the difference between current inflation and the target of inflation (Π^*). As in standard Taylor rule, we add a neutral interest rate, exogenously fixed at 2 %. The inflation target is 1 %. At the steady state, the key interest rate is equal to 3 %, so the real key interest rate is equal to the neutral interest rate ($i_{cb} - \Pi^* = i^* = 2\%$). In this case, the three gaps (output, inflation and interest rate) are equal to zero. The monetary rule M1 is:

\[(8.59-M1) \quad i_{cb} = i^* + \Pi + \alpha_4 . OG_{R} + \alpha_6 (\Pi - \Pi^*)\]

The second hypothesis (M2) is a truncated Taylor rule similar to the unique mandate of ECB. A truncated Taylor rule only contains the inflation gap. When the central bank has a unique mandate, the fear of inflation is higher. We should have: $\alpha_5 > \alpha_6$. We put $\alpha_6 = 0.5$ and $\alpha_5 > 1$. The monetary rule (M2) is:

\[(8.59-M2) \quad i_{cb} = i^* + \alpha_5 (\Pi - \Pi^*)\]

\[(8.60-vi) \quad REF = REF_{-1} + \Delta H + \Delta B + \Delta F - CG - P_b - \Delta D\]

A kind of New Keynesian Phillips Curve models inflation (Taylor, 1979). When inflation is low and close to its target, we consider that the anticipations of inflation are anchored on the target. In this case, inflation does not react to the variations of output gap (OG_{R}). Inflation depends only on the anticipated inflation (Π^a) that is anchored on the target: $\Pi^a = \Pi^*$. This leads to a horizontal NKPC. But if the variations in output are too important (for instance, close to full capacity output) or, if an exogenous supply shock occurs (for instance, a shock in the productivity or in the oil price), inflation reacts. Inflation reappears over $OG_{R_{\text{mini}}}$ and disinflation under $OG_{R_{\text{maxi}}}$. The idea that for small disturbances the inflation rate is stable while for large disturbances it is unstable was coined by Leijonhufvud (1981:112n) in the notion of a ‘corridor’. The economy has stability inside the corridor, while it will lose stability outside. Such a ‘corridor of stability’ can provide another way of looking at Keynes’s insight that the economy is not violently unstable. The shape of the curve is as follows:

![Figure 8.2 NKPC with a 'cost push' = 0](image)

We can write the equation of inflation as a sort of NKPC:

\[(8.61) \quad \Pi = \Pi^* + d_1 . (OG_{R_{\text{mini}}} + OG_{R}) + d_2 . (OG_{R_{\text{maxi}}} + OG_{R}) + \text{Cost push}\]
We can model the loss function of the society as a linear-quadratic function. It supposes that the society has a symmetric target. It is an ad hoc loss function because it does not have any micro-foundations. It is not a utility-based loss function because it does not have any micro-foundations. It is not a utility-based loss function based on the utility function of the representative agent (Woodford, 2003). It is connected with the final objective of the society. The society seeks to reach three objectives: price stability, full employment and financial-market stability. The price of equities is not part of governments’ or central banks’ policies. Society as a whole does not share the same concerns that the government or the central bank. Their reaction functions are not derived from the loss function. Asset prices in the steady state correspond to \((p_e^*)\). We measure the volatility of the asset prices by \((p_e - p_e^*)\). We can represent the welfare performance of such policies by their welfare cost. In our model, we have:

\[
\beta_1 = \beta_2 = \beta_3 = 1.33
\]

\[
LF = \beta_1 (\Pi - \Pi^*)^2 + \beta_2 OGR^2 + \beta_3 (p_e - p_e^*)^2
\]

Our model is now closed. We have defined the 26 variables of the transactions matrix introducing 37 new variables and we now have the same number of equations (62) and unknowns. Furthermore, we have managed to use the \(M + N - 1 = 8\) accounting identities issued from the transcription of the transactions matrix. The missing identity concerns the capital account of the central bank:

\[
(8.63viii)\quad REF = H
\]

This identity reflects the fact that high-powered money is supplied through advances to private banks. Of course, this accounting identity must invariably hold. When we solve numerically our model, identity (viii) \(H = REF\) perfectly holds.

7 These 37 new variables are the following:

- Government: DG
- Firms: \(gr, gr_{KD}, Y, Y_{fc}, K, I_{D}, r_{e}, u, ICF, q, q^\phi, IF,\) amort, \(OG_R\)
- Private Banks: \(CG, CG_{of}, CG_{of}, CG_{e}, CG_{e}, LR, lev, V_c, OF, E, r_{of}, r_{e}, P^a, lr\)
- Households: \(Y^w, Y^v, Y_w, Y_v, Y_h\)
- Central Bank: \(i_{cb}, \Pi, LF\)
EXPERIMENTS ABOUT FINANCIAL CRISIS ON BANKING BEHAVIOUR WITH TWO POLICY MIX

We make simulations by imposing exogenous shock corresponding to the financial crisis during four years (2007, 2008, 2009 and 2010). The financial crisis involves essentially a drop in the confidence of the economic agents and, in our model, especially that of banks.

First, the state of confidence of banks decreases sharply and then the lender’s risk increases. We can change exogenously \((\gamma_4)\) and \((\gamma_5)\) in equations (35) and (53) of lender’s risk. More the level of the conventional leverage ratio (quantity of indebtedness of firms considered normal (lev_c)) falls strongly in these equations. Last, the variation in the value of the securities lodged as collateral \((V_c)\) is certainly negative at the beginning of the financial crisis. But this change is endogenous.

Second, the state of confidence of firms decreases with the development of the financial crisis. We can change exogenously \((\gamma_0)\) in the equation (14) of the desired rate of accumulation.

Third, the state of confidence of households is going down and their propensity to consume is falling \((\alpha_1\) and \(\alpha_2\) in equation 25).

The liquidity preference increases for all the economic agents.

The consequences of the financial crisis are examined for two kinds of policy mix:

- For country (1), monetary policy is determined by a standard Taylor rule (M1) that corresponds to a dual mandate: output gap and inflation gap. The fiscal policy rule (F1) has a stabilizing effect (see Figure 8.1). But this effect is insufficient to restore the economy to the previous steady state. There is a co-ordination between the monetary and the fiscal policies. Country (1) could describe as a policy followed by the United States.

- For country (2), monetary policy is determined by a ‘truncated’ Taylor rule (M2) that corresponds to a unique mandate: inflation gap only. Fiscal policy (F2) is neutralized, because we assume the fiscal rule that the ratio of the current deficit of the Government (GD) on the GDP is constant and equal to zero, as imposed by the Maastricht treaty. Country (2) could describe an « idealized » European policy.

In our economy, the steady state is not the full-employment equilibrium. The output gap is positive, with a significant rate of unemployment. Potential output corresponds to the full capacity output. To simplify, we introduced inflation only in the NKPC and we do not take into account the difference between real and monetary variables in the rest of the model. Inflation could be integrated into the determinants of lender’s risk and borrower’s risk and into the portfolio matrix, in order to better integrate the wealth effects. Monetary policy tries to neutralize expectations of inflation.

Let us examine the bank-balance-sheet channel. Four channels are usually taken into account by literature: wealth effect (Davis et Palumbo, 2001), Tobin’s \(q\) (Tobin, 1969), the financial accelerator (Bernanke and al., 1999) and the capital of banks (Van den Heuvel, 2002). We had these four channels in our previous model (Le Heron, 2007a). In this model, we put the value of collaterals.

8 We use the E-views 5.5 software.
9 For a more precise analysis of the institutional design (European Union, United States, Japan), see Creel and Capoen (2007) and Le Heron (2007b).
EXPERIMENTS ABOUT FINANCIAL CRISIS ON BANKING BEHAVIOUR WITH TWO POLICY MIX

Je présente dans les pages suivantes les simulations sans plus d’explications. La séance de présentation au CEPN sera l’occasion de discuter sur les interprétations possibles à partir de ce modèle de caractéristiques de la dernière crise financière et de ses conséquences dans les proches années. Je compte également sur ce séminaire pour faire progresser le modèle et discuter de certains choix théoriques. Je ferai un certain nombre de propositions de développement futur.

Comme la crise est introduite dans le modèle dans une forme atténuée en 2007 puis de manière plus forte uniquement en 2008, 2009 et 2010, il est normal que le modèle converge ensuite à nouveau vers son état stationnaire. C’est le fondement des modèles SFC. Toutefois le temps et la trajectoire de cette convergence nous renseignent sur l’importance de la crise, même s’il est préférable de n’interpréter le modèle qu’à court et moyen terme. Même s’il y a eu un certain nombre d’efforts de fait sur certaines équations afin de se rapprocher des faits stylisés, ce modèle ne peut absolument pas être considéré comme calibré sur la situation d’un pays ou d’une région quelconque. Il doit donc être vu comme un modèle d’économie mathématique et non économétrique.

Outre les 2 scénarios de politique économique, intitulés grossièrement USA et UEM, nous développons 7 scénarios de crise afin de mieux comprendre la dynamique du modèle et de la crise.

1) **Crise de l’état de confiance des banques**
- Baisse de l’état de confiance et du niveau du levier d’endettement considéré conventionnellement comme acceptable par les banques dans la fonction de risque du prêteur. Ceci se traduit par une hausse du risque du prêteur donc un rationnement dans le financement des entreprises et de la croissance ainsi qu’une pente plus forte de la courbe des taux d’intérêt. Ceci correspond à une préférence pour la liquidité des banques plus élevée.

2) **Crise de l’état de confiance des firmes**
- Baisse de l’état de confiance des entreprises dans leur fonction d’investissement désiré. Cela correspond à une baisse de la demande effective par des anticipations plus pessimistes.

3) **Crise de l’état de confiance des ménages**
- Baisse de l’état de confiance des ménages qui se traduit par une baisse de leur propension marginale à consommer leurs revenus salariaux.

4) **Crise de l’état de confiance des banques et des firmes**

5) **Crise de l’état de confiance des banques et des ménages**

6) **Crise de l’état de confiance des firmes et des ménages**

7) **Crise de l’état de confiance des banques, des firmes et des ménages**
- Ceci correspond à une crise généralisée de confiance et donc à une hausse généralisée de la préférence pour la liquidité des agents économiques. Dans ces simulations, il ne faut pas trop attacher d’importance au niveau respectif de la crise issue des 3 agents (Banques, firmes et ménages). Pour respecter les faits stylisés de la crise de 2008, j’ai introduit un niveau de crise plus élevé pour les banques (crises bancaire gravissime), puis pour les entreprises et enfin pour les ménages. Tout autre scénario peut très rapidement être simulé.

Le modèle et les chocs sont les mêmes pour les deux économies, même si l’état stationnaire est quelque peu différent étant donné les hypothèses de politique économique différentes qui ont été introduites.
Figure 8.3A Fall in the state of confidence during 4 years (Policy mix: “USA”)
Effects on the growth rate of the economy

Figure 8.3B Fall in the state of confidence during 4 years (Policy mix: “UEM”)
Effects on the growth rate of the economy
Figure 8.4 A Fall in the state of confidence during 4 years (Policy mix: “USA”)
Effects on the desired growth rate of accumulation of capital of Firms

Figure 8.4B Fall in the state of confidence during 4 years (Policy mix: “UEM”)
Effects on the desired growth rate of accumulation of capital of Firms
Figure 8.5 A Fall in the state of confidence during 4 years (Policy mix: “USA”)
Effects on the output gap

Figure 8.5B Fall in the state of confidence during 4 years (Policy mix: “UEM”)
Effects on the output gap
Comme il y a un credit crunch, il est normal que le taux d’autofinancement des entreprises progresse.
Figure 8.7 A Fall in the state of confidence during 4 years (Policy mix: “USA”)

Effects on the capacity utilisation rate of firms

Figure 8.7 B Fall in the state of confidence during 4 years (Policy mix: “UEM”)

Effects on the capacity utilisation rate of firms
L’effet déflationniste est assez fort d’autant que nous partions d’un taux d’inflation de 1%
La règle de Taylor tronquée (UEM) est moins pénalisante avec cette crise déflationniste car la sensibilité forte à l’inflation leur fait baisser fortement le taux d’intérêt directeur.
Crise financière et comportement bancaire dans un modèle SFC post keynésien - Le Heron Edwin - CEPN - 23 janvier 2009 - 25

Figure 8.10 A Fall in the state of confidence during 4 years (Policy mix: “USA”)

Effects on the gap: Long-term interest rate (i_l) – Short-term interest rate (i_{cb})

(II faut multiplier par 100 pour avoir le résultat en %)

Figure 8.10B Fall in the state of confidence during 4 years (Policy mix: “UEM”)

Effects on the gap: Long-term interest rate (i_l) – Short-term interest rate (i_{cb})

(II faut multiplier par 100 pour avoir le résultat en %)

Contrairement à IS-LM, au nouveau consensus ou aux modèles post keynésiens (Lavoie, Zezza), la pente de la courbe de taux d’intérêt selon le terme n’est pas fixe, mais endogène. On retrouve ainsi un fait stylisé de la dernière crise: baisse des taux courts et stabilité voire hausse des taux longs correspondant à la hausse de la prime de risque exigée par les banques. Une hausse de 3% de la différence T_x court-T_x long est proche de ce qui a été constaté aux E.U. par exemple.
Figure 8.11A Fall in the state of confidence during 4 years (Policy mix: “USA”)
Effects on the lender’s risk of commercial banks

Figure 8.11B Fall in the state of confidence during 4 years (Policy mix: “UEM”)
Effects on the lender’s risk of commercial banks
Crise financière et comportement bancaire dans un modèle SFC post keynésien - Le Heron Edwin - CEPN - 23 janvier 2009 - 27

L’importance des actions dans le financement de l’économie explique en partie cette évolution.

Figure 8.12A Fall in the state of confidence during 4 years (Policy mix: “USA”)

Effects on the leverage ratio of firms \((\text{CP} + \text{OF} + \text{L}) / \text{K}\)

Figure 8.12B Fall in the state of confidence during 4 years (Policy mix: “UEM”)

Effects on the leverage ratio of firms \((\text{CP} + \text{OF} + \text{L}) / \text{K}\)
Crise financière et comportement bancaire dans un modèle SFC post keynésien

Le Heron Edwin - CEPN - 23 janvier 2009

Figure 8.13A Fall in the state of confidence during 4 years (Policy mix: “USA”) Effects on the rationing of finance from banks

Figure 8.13B Fall in the state of confidence during 4 years (Policy mix: “UEM”) Effects on the rationing of finance from banks
Figure 8.14A Fall in the state of confidence during 4 years (Policy mix: “USA”)

Effects on the structure of the financing from banks
Structure of financing at the stationary state: CP = 7 %, E = 52 %, L = 17 %, O = 24 %

Figure 8.14B Fall in the state of confidence during 4 years (Policy mix: “UEM”)

Effects on the structure of the financing from banks
Structure of financing at the stationary state: CP = 9 %, E = 47,5 %, L = 19 %, O = 24,5 %
Figure 8.15A Fall in the state of confidence during 4 years (Policy mix: “USA”)
Welfare performance of the society:
Loss function with three equal objectives: Inflation, Output gap and Stability of asset prices

Figure 8.15B Fall in the state of confidence during 4 years (Policy mix: “UEM”)
Welfare performance of the society:
Loss function with three equal objectives: Inflation, Output gap and Stability of asset prices

Même si cela ne sert à rien, c’est beau...
Figure 8.16A Fall in the state of confidence during 4 years (Policy mix: “USA”)

Effects on the Fiscal Deficit of State

By hypothesis, there is a balanced budget in the second country (“UEM”)
Acknowledgements

Our grateful thanks to Philip Arestis, Emmanuel Carré, Jérôme Creel, Wynne Godley, Mark Lavoie, Jacques Mazier, Dominique Plihon, Malcolm Sawyer, Eric Tymoigne and Gennaro Zezza for their helpful comments on the previous drafts. See Le Heron and Mouakil (2008) for the Post Keynesian SFC model.

References

Appendix 1. Glossary of variables

Y National income
Yfc Output of full capacity
gr Growth rate in the national income
Π Inflation
Π* Inflation target
N Employment
Nfe Full employment
OG Output gap
OGR Ratio of output gap
Un Unemployment
run Rate of unemployment
L Loans (variable long-term rate)
CP Commercial paper
B Treasury bills
E Equities
e Number of equities
pe Price of equities
OF Bonds (Fixed rate)
of Number of bonds
pof Price of fixed rate bonds
LF Loss function of the society

Central Bank
Pcb Central bank profits
REF Reserve requirements (CB refunds)
H High-powered money
icb Central bank key interest rate
i* Neutral interest rate

Commercial Banks
Pb Banks profits
Vb Net wealth of banks
CG Capital gains of banks (Capital losses of firms)
CGe Capital gains on equities
CGfa Expected capital gains on equities
CGof Capital gains on bonds
CGofa Expected capital gains on bonds
icp Interest rate on commercial paper
id Interest rate on deposits
i Interest rate on loans
ib Interest rate on treasury bills
FCI Financial Condition Index
LR Lender’s risk
lr Lender’s risk for long-term interest rate

Firms
I Net investment
ID Investment demand
W Wages
K Stock of capital
Vf Net wealth of firms
u Capacity utilization rate
grk Growth rate in the stock of capital
grkd Desired growth rate in the stock of capital
ΔF Net finance
φ Gross finance
φd Desired gross investment
IF Internal Funds
amort Amortization (debt redemption)
P Firms profits
Pd Distributed profits
Pu Undistributed profits
rcf Borrower’s risk (ratio of cash flow)
γ State of confidence of firms

Government
G Government expenditure
DG Government deficit
gdg Constant ratio of government deficit
Pcb Central bank profits
T Taxes

Households
C Consumption
D Bank deposits
Ywa Expected disposable income of workers
Yva Expected disposable financial income
Yw Disposable income of workers
Yv Disposable financial income
Yh Disposable income of household
APPENDIX 2. 2 VERSIONS DU MODÈLE SELON 4 HYPOTHÈSES

Pays (1) dit “USA” = F1-M1

Pays (2) dit “U.E” = F2-M2

(1) \(Y = C + I + G \)
PIB

(2) \(gr_Y = \Delta Y/Y_{t-1} \)
Taux de croissance du PIB

(3) \(T = \tau \cdot W_{t-1} \)
Avec \(\tau \) : constant
Impôts

(4) \(B = B_{t-1} + DG \)
Bons du Trésor

(5) \(i_b = i_1 \)
Taux d’intérêt sur bons du Trésor

F 1: Modèle 1 avec une politique budgétaire légèrement contracyclique

(F1-6) \(G = G_{t-1} \cdot (1 + gr_Y_{t-1}) \)
Dépenses publiques

(F1-7-i) \(DG = G + i_{b,1} \cdot B_{t-1} - T - P_{eb} \)
Déficit public

F 2: Modèle 2 avec une politique budgétaire neutralisée: DG/Y-1 constant

(F2-6-i) \(G = DG - i_{b,1} \cdot B_{t-1} + T + P_{eb} \)
Dépenses publiques

(F2-7) \(DG = g_{dg} \cdot Y \)
Avec \(g_{dg} \): ratio constant
Déficit public

(8) \(K = K_{t-1} + I \)
Stock de capital

(9-iii) \(I = \phi + IF \)
Investissement net

(10) \(IF = P^d - \text{amort} \)
Autofinancement

(11) \(\alpha \)
Avec \(\alpha \) : constant
PIB de pleine capacité

(12) \(\alpha \)
Avec \(\alpha \) : constant
Indice des Conditions Financières

(13) \(\gamma \)
Avec \(\gamma \) : constant
Ratio de l’écart de production

(14) \(r_{cf} = P^d / K_{t-1} \)
Risque de l’emprunteur, ratio de cash flow)

(15) \(u = Y / Y_{fc} \)
Taux d’utilisation du capital

(16) \(u = Y / Y_{fc} \)
Taux d’utilisation du capital

(17) \(Y_{fc} = K_{t-1} \cdot \sigma \)
Avec \(\sigma \) : constant
Solaires

(18) \(FCI = \mu_1 \cdot i_1 \cdot L/K + \mu_2 \cdot i_{cb} \cdot CP/K - \mu_3 \cdot E/Y \)
With \(\mu_i \): constant
Profits des entreprises

(19) \(OG_R = Y_{fc} - Y / Y_{fc} \)
Ratio de l’écart de production

(20) \(W = Y / (1 + \rho) \)
Avec \(\rho \) : constant
Profits distribués

(21-ii) \(P = Y - W - i_{1,1} \cdot L_{t-1} - i_{CP,1} \cdot CP_{t-1} - i_{of,1} \)
Profits non distribués

(22) \(P^d = (1 - s_1) \cdot P_{t-1} \)
Avec \(s_1 \) : constant
Profits non distribués

(23-ix) \(P^d = P - P^d \)
Profits non distribués

(24) \(e = e_{1,1} \cdot (1 + gr_{y,1}) \)
Avec \(gr_{c,1} \) : constant
Nombre d’actions

(25) \(C = \alpha_1 \cdot Y_w^a + \alpha_2 \cdot Y_{v1}^a + \alpha_3 \cdot D_{t-1} \)
Avec \(\alpha_i \) : constant
Consommation

(26) \(Y_w = Y_{w,1} + \theta_h \cdot (Y_{w,1} - Y_{w,1}^a) \)
Avec \(\theta_h \) : constant
Revenu disponible anticipé des travailleurs

(27) \(Y_{v1} = Y_{v1,1} + \theta_h \cdot (Y_{v1,1} - Y_{v1,1}^a) \)
Avec \(\theta_h \) : constant
Revenu financier disponible anticipé

(28) \(Y_w = W - T \)
Revenu disponible des travailleurs

(29) \(Y_v = i_{e,1} \cdot D_{t-1} \)
Revenu financier disponible

(30) \(Y_h = Y_w + Y_v \)
Revenu disponible des ménages

(31-iv) \(D = D_{t-1} + Y_h - C \)
Dépôts bancaires

(32) \(\varphi = \varphi^d \cdot (1 - LR) \)
Financement brute

(33) \(\Delta F = \varphi - \text{amort} + CG \)
Financement net

(34) \(CG = CG_{e} + CG_{of} \)
Gains en capital des banques (pertes en capital des firmes)

(35) \(LR = \gamma \cdot a_1 \cdot (lev_{v,1} - lev_{c,1}) - b_1 \cdot V_C + c_1 \cdot i_{cb} \)
Avec \(\gamma_i \), \(a_1 \), \(b_1 \), \(lev_c \) et \(c_i \): constants
Risque du prêteur
(36) \(\text{lev} = \frac{(\text{CP} + \text{OF} + \text{L})}{K} \)

(37) \(V_C = E / E_1 \)

(38) \(\text{OF} = (\lambda_{10} + \alpha_{11} \cdot r_{d1}^{\alpha} - \lambda_{12} \cdot r_{e}^{\alpha} - \lambda_{13} \cdot i_1 - \lambda_{14} \cdot i_C) \cdot F \)

(39) \(E = (\lambda_{20} - \lambda_{21} \cdot r_{d1}^{\alpha} + \lambda_{22} \cdot r_{e}^{\alpha} - \lambda_{23} \cdot i_1 - \lambda_{24} \cdot i_C) \cdot F \)

(40) \(L = (\lambda_{30} - \lambda_{31} \cdot r_{d1}^{\alpha} - \lambda_{32} \cdot r_{e}^{\alpha} + \lambda_{33} \cdot i_1 - \lambda_{34} \cdot i_C) \cdot F \)

(41) \(\text{CP} = F - \text{OF} - E - L \)

(42) \(r_{of}^{\alpha} = i_{of} + \left(C_{G_{of}}^{\alpha} / OF \right)_{-1} \)

Avec \(i_{of} \) : constant

(43) \(C_{G_{of}}^{\alpha} = C_{G_{of-1}}^{\alpha} + \theta_{b1}(C_{G_{of-1}}^{\alpha} - C_{G_{of-1}}) \)

(44) \(C_{G_{of}} = \Delta p_{of} \cdot \text{of}_{-1} \)

(45) \(\text{of} = \text{OF} / p_{of} \)

(46) \(p_{of} = p_{of-1} \cdot (1 + i_{of}) / (1 + i_{of}) \)

(47) \(r_{e}^{\alpha} = (P_{d1}^{\alpha} + C_{G_{e}}^{\alpha}) / E_{-1} \)

(48) \(P_{d1}^{\alpha} = P_{d1-1}^{\alpha} + \theta_{b1}(P_{d1}^{\alpha} - P_{d1-1}^{\alpha}) \)

(49) \(C_{G_{e}}^{\alpha} = C_{G_{e-1}}^{\alpha} + \theta_{b1}(C_{G_{e-1}}^{\alpha} - C_{G_{e-1}}) \)

(50) \(C_{Ge} = \Delta p_{e} \cdot e_{-1} \)

(51) \(p_{e} = E / e \)

(52) \(i_{1} = i_{cb} + \text{Ir} + \chi_{1} \)

Avec \(\chi_{1} \) : constant

(53) \(\text{Ir} = \gamma_{5} + a_{2} \cdot (\text{lev}_{-1} - \text{lev}_{e}) - b_{2} \cdot V_{C} \)

Avec \(\gamma_{5}, a_{2} \) et \(b_{2} \). \(\text{Lev}_{e} \) constant = convention sur le ratio d’endettement normal

(54) \(i_{CP} = i_{cb} + \chi_{2} \)

Avec \(\chi_{2} \) : constant \(\chi_{1} > \chi_{2} \)

(55) \(i_{d} = i_{cb} - \chi_{3} \)

(56-vii) \(P_{b} = b_{11} \cdot B_{-1} + b_{1} + i_{d-1} \cdot L_{-1} + i_{CP-1} \cdot C_{P-1} + i_{of} \cdot of_{-1} + P^{dl} - i_{d-1} \cdot D_{-1} - i_{cb-1} \cdot \text{REF}_{-1} \)

(57) \(H = \eta \cdot D \)

(58-vii) \(P_{cb} = i_{cb-1} \cdot \text{REF}_{-1} \)

M1: Modèle 1 avec une règle monétaire complète (écart d’inflation écart de production) RM1

(59) \(i_{cb} = i^{*} + \Pi - \alpha_{4} \cdot \text{OG} + \alpha_{5} (\Pi - \Pi^{*}) \)

Taux d’intérêt BC (règle monétaire)

M2: Modèle 1 avec une règle monétaire tronquée (écart d’inflation uniquement) RM2

(60-vii) \(\text{REF} = \text{REF}_{-1} + \Delta H + \Delta B + \Delta F - \text{CG} - P_{b} - \Delta D \)

Reserves obligatoires (refinancement)

(61) \(\Pi = \Pi^{*} + d_{1} \cdot (\text{OG}_{\text{Rmini}} - \text{OG}_{R}) + d_{2} \cdot (\text{OG}_{\text{Rmaxi}} - \text{OG}_{R}) \)

Inflation (courbe NKPC)

(62) \(LF = \beta_{1}(\Pi - \Pi^{*})^{2} + \beta_{2} \text{OG}_{R}^{2} + \beta_{3} \left(p_{e} - p_{e}^{*} \right)^{2} \)

Fonction d’objectif de la société

Equation manquante : (63-viii) \(\text{REF} = H \)